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Abstract

This paper describes selected nondestructive evaluation (NDE) approaches that were

developed or tailored at the NASA Glenn Research Center for characterizing advanced material

systems. The emphasis is on high-temperature aerospace propulsion applications. The material

systems include monolithic ceramics, superalloys, and high temperature composites. In the

aeronautic area, the highlights are cooled ceramic plate structures for turbine applications, y-TiAl

blade materials for low-pressure turbines, thermoelastic stress analysis (TSA) for residual stress
measurements in titanium based and nickel based engine materials, and acousto ultrasonics (AU)

for creep damage assessment in nickel-based alloys. In the space area, examples consist of cooled

carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon

fiber reinforced polymer matrix composites for energy storage on the international space station

(ISS). The role of NDE in solving manufacturing problems, the effect of defects on structural

behavior, and the use of NDE-based finite element modeling are discussed. NDE technology needs

for improved micro-electronic and mechanical systems as well as health monitoring of micro-

materials and components are briefly discussed.

1 Aeronautic Applications

In the first two applications discussed below, the focus is on ceramic material optimization and

superalloys' resistance to defects, respectively. In the last two applications discussed below, the

emphasis is on NDE methods that can gauge residual stress, and characterize creep

damage/remaining life in superalloys, respectively.

1.1 Cooled ceramic vane materials

Tough high temperature materials that are light in weight and can operate with minimal cooling are

needed to improve the efficiency of gas turbine engines by increasing the operating temperature

and/or decreasing the cooling air [1]. In-situ toughened silicon nitride ceramics are potential

candidates because of their low density and high temperature strength. High processing cost was

found to be the "bottle neck" in the manufacturing of these ceramics. Advanced rapid prototyping
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and layered manufacturing are being used for minimally-cooled and functionally-graded ceramic

structures at NASA Glenn Research Center because these techniques can provide low cost

processing of engine parts [2]. NDE is used for process optimization and defect analysis. In

addition, 2D and 3D finite element analysis are used to optimize the cooling channel geometry

and spacing to reduce thermal stresses as well as to help evaluate thermal and environmental

barrier coatings.

1.2 3,-TiAI blade materials

_,-TiA1 is a good low-density, high-strength material for low-pressure turbine blade applications

in aircraft engines. However, because of its low ductility (relatively brittle behavior), its lack of
resistance to defects and/or damage can substantially degrade its fatigue properties. In this study,

specimens, rejected due to NDE indications, were fatigue-tested to identify critical defects that may

affect fatigue life. Microfocus x-ray radiography was utilized to correctly detect/identify the critical

defects (Fig. 1). However, the size of defects was almost always overestimated due to the complex

nature of the micro-shrinkage porosity [3]. In addition, radiography often imaged a "halo" around

the defect that was possibly due to some chemical inhomogeneities. It was unclear from NDE

alone which parts of the indication are important to the fatigue cracking process. This led to

overestimating the contribution of the casting defect on fatigue crack initiation. However, the end
result showed that fatigue strengths can be reasonably predicted based on loading conditions and

defect size [3].

1.3 Residual stress measurements via thermoelastic stress analysis

TSA is an NDE technique based on the fact that materials experience small temperature changes

when compressed or expanded. When a structure is cyclically loaded (i.e., cyclically compressed

and expanded), a surface temperature profile results which correlates to the stress state of the

structure's surface. The surface temperature variations resulting from a cyclic load are measured

with an infrared camera. Traditionally, the temperature amplitude of a TSA signal was theoretically

defined to be linearly dependent on the cyclic stress amplitude (i.e., the changing stress). As a

result, the temperature amplitude resulting from an applied cyclic stress was assumed to be

independent of the cyclic mean stress. In [4], it was shown that mean stresses significantly
influenced the TSA results for titanium-based alloys (Fig. 2) and nickel-based alloys. For example,

in the case of Ti-6A1-4V, a 276 MPa (40 ksi) change in mean stress caused an 8% change in the

TSA results as represented by the IR signal values in Fig. 2. The smallest statistically significant

change in mean stresses was observed to be 69 MPa (10 ksi). Further refinement of the TSA

technique was accomplished by developing accurate temperature correction curves. These curves

are required since the thermoelastic temperature change is also highly dependent on the specimen's

absolute temperature. In addition, the non-linear TSA response was studied by allowing the TSA

system to capture the second harmonic response by developing a linear frequency doubler and

placing it in-line with the load cell reference signal. It should be noted that the first harmonic of the

thermal response is a function of the cyclic stress amplitude and the mean stress while the second
harmonic is a function of the square of the stress amplitude. By capturing both harmonics, the

stress amplitude and the mean stress at a given point on a structure subjected to a cyclic load can

be simultaneously obtained. Lastly, comparisons between the experimental data and theoretical

predictions showed good agreement. As a result, confidence was achieved concerning the ability to

simultaneously obtain values for the static stress as well as the cyclic stress amplitude of structures.
The observable differences in the mean stresses, from 69 to 207 MPa (10 ksi for titanium based to

30 ksi for nickel based materials), are sensitive enough for useful monitoring of residual stresses on
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theorderof yieldstressesof 930MPa(135ksi).Becausethemeanstresssensitivitywasestablished
in [5] for bothnickelandtitaniumalloys,it is nowfeasibletoestablishaprotocolthatwouldenable
themonitoringof residualstressesin structuresutilizing theTSA technique.

1.4 Creep damage assessment via acousto-ultrasonics

The objectives are to develop quantitative measures of damage or remaining life in hot section

parts by assessing the feasibility of NDE methods and by studying degradation assessment of
material/mechanical properties via NDE data [6]. AU measurements, as represented by the centroid

of the power spectrum, are shown in Fig. 3 as a function of position along a stepped creep

specimen. The areas of each step were chosen to produce various levels of damage. The stresses in

each step corresponded to fractional lives representing 12.5%, 25%, 50% and 100%. The 100% life

relates to creep fracture in the smallest area (i.e., highest stressed step). The specimen design

allows for convenient post-mortem NDE analysis of creep damage in a failed specimen. The AU
measurements proved sensitive to damage at 50% and 100% of used up life separate from thermal

exposure. Further, AU maximum centroid of power values increased with time-to-failure and

segregated between the 1350 °F and the 1500 °F populations (Fig. 4). Further findings from [6] are

1) stepped creep specimens are useful for NDE in quantifying remaining creep life, and 2) Eddy
current substantiated AU findings in gauging the creep damage separate from thermal exposure.

2 Space Applications

The focus in both applications is on assuring material/component quality and uniformity via NDE

and on demonstrating the importance of integrating NDE and FEM for rapid and reduced cost in

proof testing and material development of advanced composites.

2.1 Cooled carbon-carbon composite for gas generator combustors

The objective is to assure quality and uniformity in manufacturing and to further the understanding

of damage due to thermal and mechanical testing. The latter will be achieved by correlating before-

and after-testing NDE with the material thermomechanical properties based on FEM, and with

metallographic sectioning where applicable. Figure 5 shows the radiographic and tomographic

capabilities in detecting problems, errosion in metallic cooling tubes and nonuniform brazing, due

to the application of brazing cycles. These findings guide the NDE-based FEM modeling of space

component [7], a key to rapid and reduced cost in proof testing and material development.

2.2 Polymer matrix composite for flywheel based energy storage system

Composite flywheels are being developed in lieu or to complement expensive and short-life
chemical batteries. Furthermore, they promise order of magnitude increases in performance and

service life for several NASA aerospace energy storage applications. Rotor certification for safe

life, where NDE plays a major role, is the challenge to overcome before these advanced flywheels

reach operational status. NDE combined with stress analysis and life prediction are expected to set a

standardized procedure to accurately assess the applicability of using various composite materials to

design a suitable rotor/flywheel assembly. Carbon fiber reinforced polymer composites are being

considered for energy applications because of the high energy and power densities they possess [8]
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andthatcompositedesignallowsburstfailuremodesthat are relatively benign in comparison to

flywheels made of metallic materials [9].

Structural assessment of a flywheel rotor assembly by integrating FEM and NDE of a cylindrically-

shaped composite rotor with hollowed hub design is presented. Detailed analyses under combined

centrifugal and interference fit loading was performed. Three-dimensional analyses and two-

dimensional fracture mechanics analyses were conducted and comparison of the results obtained
with those extracted via NDE findings are reported. Cracks due to rotational loading up to

34000 rpm were successfully imaged with NDE (Fig. 6) and predicted with 3D FEM (Fig. 7).

A procedure that extends current structural analysis to life prediction tool was also defined [10].

Pancake type composite rotors with a solid hub design were also evaluated by using acousto
ultrasonic decay rate to classify the rotors before testing and to study damage assessment after

testing (Fig. 8). Only flywheels from (d) and (e) were properly classified by AU and reached
desired 40,000 to 45,000 rpm before first matrix cracking, those from (a), (b), and (c) depicted

large scatter in the signal. AU from after testing data was found to be a viable NDE technique for

gauging life degradation of composite rotors.

2 MEMS and Health Monitorim,

Glennan Microsystem Initiative, a joint industry-government-university program led by NASA

Glenn research center since 1998, is poised to develop physical and chemical microsensors and

microactuators for operation in harsh environments (high temperature power and radiation,

humidity, etc...). The technologies include harsh environment electronics, micro-power, wireless

communications, signal processing, material development, and micro fabrication methods

development (www.glennan.org). Many relevant papers in the areas of smart sensors, MEMS and

health monitoring can be found in [11].

3. Conclusions

The critical role of nondestructive evaluation as a material characterization modality was

demonstrated for several aerospace applications. NDE was successfully used for ceramic process

optimization and _,-TiA1 effect of defect investigation on fatigue life. Thermoelastic stress analysis
was found to be a viable NDE method to monitor the residual stress-state of structural materials.

Acousto ultrasonics parameters were capable of quantifying creep damage starting at 50% of used

up life and correlated well with time-to-failure and used up life in superalloys. Microfocus

radiography and computed tomography in conjunction with finite element modeling and fracture

analysis proved to be useful for rapid and reduced cost in proof testing and material development of
advanced composites. Lastly, acousto ultrasonics was able to classify flywheel material

systems and gauge degradation due to spin testing of composite rotors.

References

1. Bhatt, R.T., "Minimally Cooled Ceramics and Fiber Reinforced Ceramic Matrix Composite
Turbine Components- A Progress Report," NASA CP-1999-208915/Vol.2, pp40-1 - 40-12.

2. Klosterman, D., et.al, "Automated Fabrication of Monolithic Ceramics and Ceramic Matrix

Composites (CMCs) Using a Novel Rapid Prototyping Method," Ceramic Engineering and Science

Proceedings, Vo.; 19, #3, pp 291-301, 1998.

3. Lerch, B. A., Draper, S. L., Baaklini, G.Y., Pereira, J.M., and Austin, C.M., "Effect of Defects

on the Fatigue Life of ),-TiAI," NASA CP-1999-208915/Vol.2, pp30-1 - 30-11.

NASA/TM--2000-210474 4



4. Gyekenyesi,A.L., andBaaklini,G.Y., "ThermoelasticStressAnalysis:TheMeanStress
Effectin MetallicAlloys,"Proceedings of SPIE Conference on the NDE of Aging Materials and

Composites, Newport Beach, CA., March 1-4, 1999, Volume 3585, G.Y. Baaklini, C.A. Lebowitz,

and E.S. Boltz, editors, pp. 142-151.

5. Gyekenyesi, A. L., and Baaklini, G.Y., "Quantifying Residual Stresses by Means of

Thermoelastic Stress Analysis," Proceedings of SPIE Conference on the NDE of Aging Materials

and Composites, Newport Beach, CA., March 5-9, 2000, Volume 3993, G.Y Baaklini, C.A.
Lebowitz, and E.S. Boltz, editors. ' ...........

6. Kautz, H.E., Baaklini, G.Y., Shanon, R., Gyekenyesi, A.L., "NDE of Creep Tested and

Thermally Aged Udimet 520 Nickel Based Superalloy," ASNT 2000 Spring Conference and
9th Annual Research Symposium, Birmingham, Alabama, U.S.A. (to be published).

7. Abdul-Aziz, A., Baaklini, G.Y., and Zagidulin, D., "Challenges in Integrating Nondestructive
Evaluation and Finite Element Methods for Realistic Structural Analysis," Proceedings of SPIE

Conference on the NDE of Aging Materials and Composites, Newport Beach, CA., March 5-9,
2000, Volume 3993, G.Y Baaklini, C.A. Lebowitz, and E.S. Boltz, editors.

8. Olszewski, M., Eisenhaur, D. B., Beachley, N., and Kirk, J. A., "On the Fly or Under Pressure,"

Mechanical Engineering, Vol. 110, No. 6, June 1988, pp. 50-57.

9. Coppa, A. P., "Flywheel Containment and Safety Considerations," An Assessment of Integrated
Flywheel System Technology, NASA'cP 2346, 1984, pp. 243-264.

10. AbduI-Aziz, A., Baaklini, G.Y., and Trudell, J., "Structural Analysis of Composite Flywheels:

An Integrated NDE and FEM Approach," to be published.

11. Smart Structures and Materials, edited by V.K. Vardan, Proceedings of SPIE, 1999, Vol. 3673.

NASA/TM--2000-210474 5



Magnified

Region

Failure Location

Fig. 1- F-TiA1 sample where failure location is not at largest micro-

shrink porosity

i

i-

9200

9000

8800

8600

8400

8200

8000

7800

7600

Ti-6AI-4V

- Y = 8136 + 2.50* X
,,Ik

R = 0.85 _ ._.
_ u

• 0

_ B 0

• 0

<> 0

0

Specimen I • • •

Specimen2 0 " o

Specimen3 o ", [] 0

I I I I I I I

-50 0 50 100 150 200 250 300

Mean stress, MPa

Fig.2- The mean stress dependence IR signal range for Ti-6A1-4V

NASA/TM--2000-210474 6



tn

o

"12
,m

O

4_

C

O

2.5

.............................................. T...............................................

/ I

0,5 1 1.5 2,5 3 3.5 4.5 5

Position along specimen, Inches

Fig.3- Acousto ultrasonic measurements along profile of the

stepped creep specimen (75.7 ksi 1350 F and 260 hrs). Indicated are

percentages of used-up life.

0
o

0

0

0

¢

x
iIJ

2.6 ........

255

2.5

245

24 • i !
200 400 600 800 1000

Time to Failure, Houre

1200 1400 1600

- 4.- 1350F

max2 I
--4k-- 1500 F

max j

Fig.4- Maximum AU values increase with specimen lives

NASA/TM--2000-210474 7



Leak

Fig.5- X-ray and three computed tomography slices of the composite panel.

(a) (b)

Fig.6- X-ray computed tomography slices (a) ]] to axis of rotation and (b) _1_to axis

of rotation near the top.
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Ultrasonic Decay rate on all Flywheels
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